

BPA NONRESIDENTIAL LIGHTING IMPACT EVALUATION

Agenda

- **01** Background
- **02** Methodology
- 03 Findings
- **04** Program Response
- 05 Next Steps and Q&A

O 1 Background

Teams

BPA Core Team

David Tripamer

Planning and Evaluation

Melissa Podeszwa

Energy Efficiency Representative

TBD

Marketing Specialist

Contractor Team

Lauren Gage

Justin Spencer
Joe Van Clock

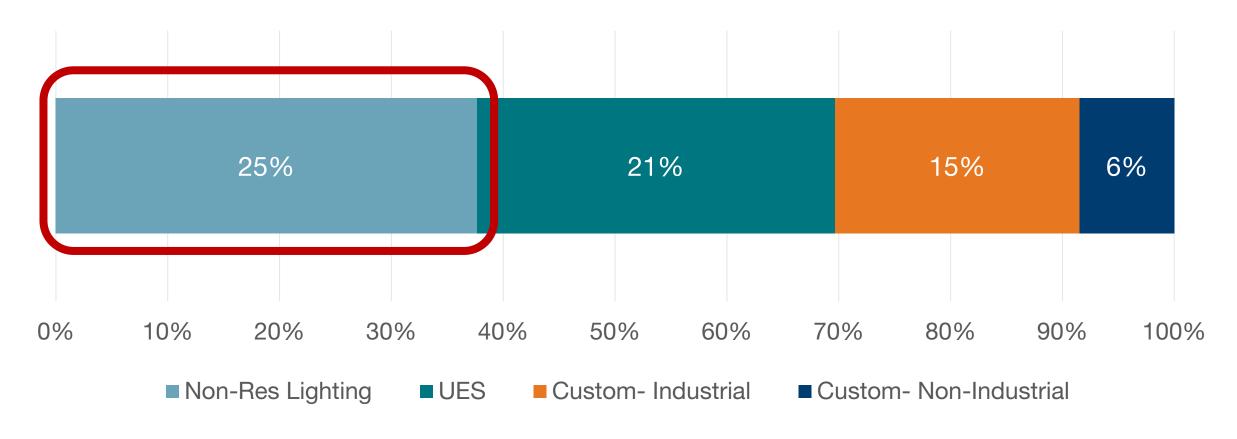
Tami Rasmussen

Ted Helvoigt
Kayla Banta
Sarah Monohon
Liandra Chapman

Mike Baker

Santiago Rodríguez-Anderson

Erin Wenger


How We Got Here

- July: Final report posted to BPA website
- October: New Evaluation Lead hired
- December: Results webinar held

2020-2021 Portfolio Savings: By Measure Type

Lighting calculators are the largest single share of the portfolio, followed by UES and Industrial Custom Projects.

^{*}Non-Industrial includes commercial, agricultural and residential projects.

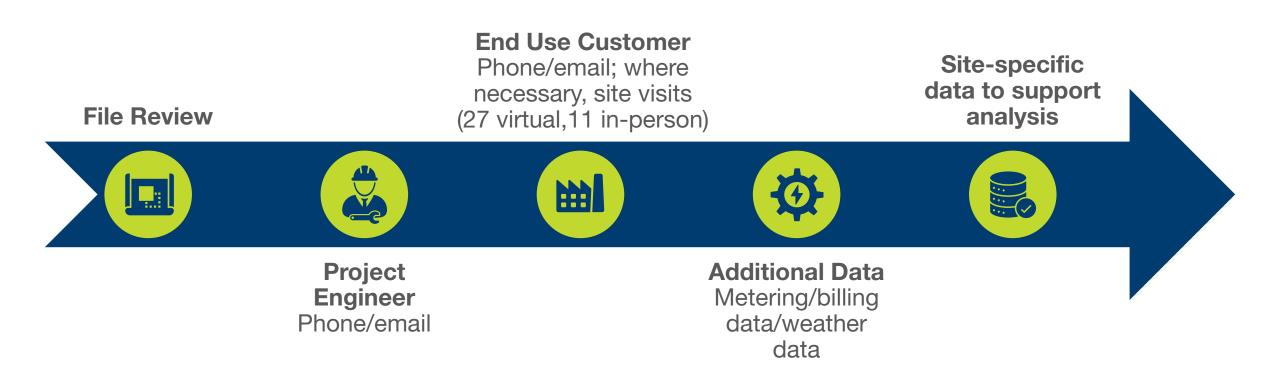
Nonresidential Lighting Evaluation Objectives

Estimate first-year savings and cost-effectiveness

Develop recommendations to improve reliability of savings

12 Methodology

Sampling Strategy



- Sampling unit: measure (TAP) for a single project at a distinct site
- Sample stratified by Option 1 v. Option 2 utility and project size
- BPA strives for 90/10 on studies, minimum of 80/20
- This study achieved 90/4 (n=38 projects)

Nonresidential Lighting Study Sample

Utility Type	Size Strata	Reported Savings (kWh)	Number of Reported Projects	Sample Size (Projects)
Option 1	0	610,346	180	0
	1	11,136,371	499	4
	2	11,146,229	105	5
	3	11,058,927	35	5
	4	11,316,272	18	5
	Subtotal	45,268,145	837	18
Option 2	0	113,180	30	0
	1	5,908,192	226	4
	2	5,874,016	52	4
	3	5,817,138	23	5
	4	6,252,851	10	5
	Certainty	4,013,697	2	2
	Subtotal	27,979,074	343	20
	Total	73,247,219	1,180	38

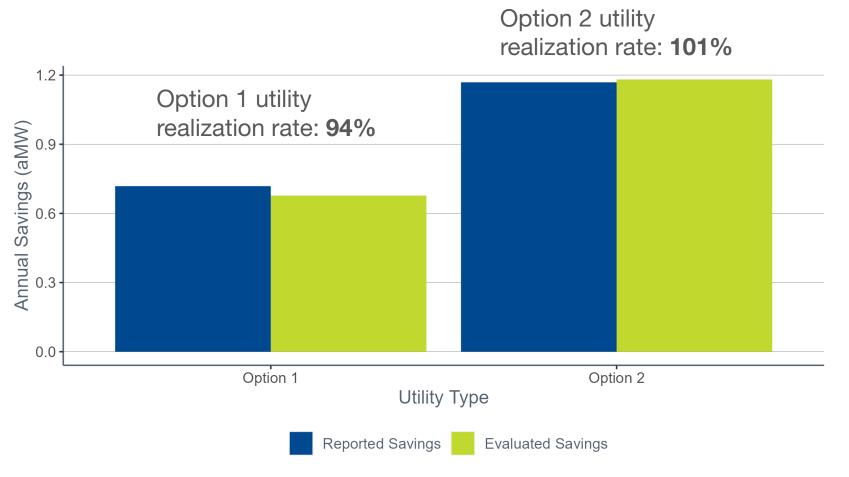
Data Collection Process

Analysis Process

Review existing BPA lighting calculator

Assess
model inputs
and
incorporate
supplemental
data if needed

Run the model and estimate site level savings



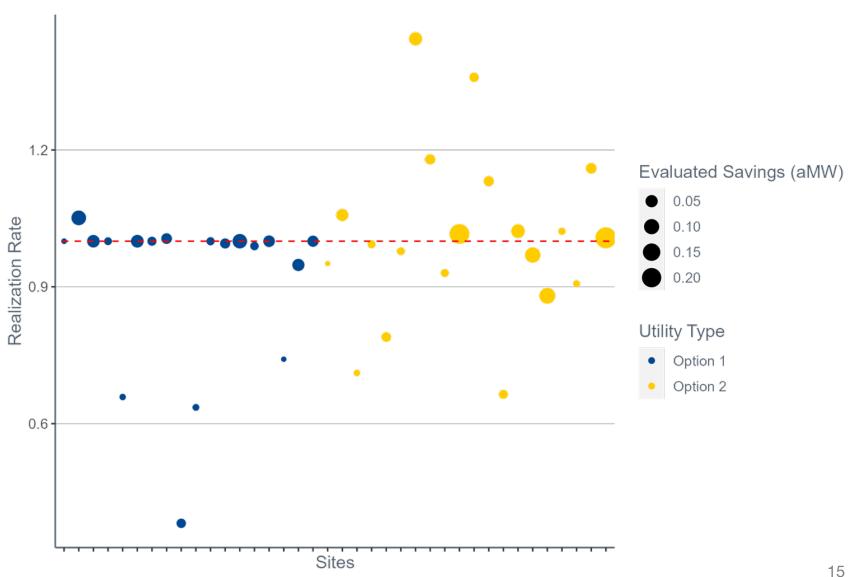
Extrapolate site savings to nonresidential lighting portfolio

03 Findings

Evaluated First Year Savings

Evaluated first-year savings by utility type compared to reported savings

Evaluated savings
were slightly lower than
reported savings for
Option 1 sites while they
were slightly higher
than reported for
Option 2 sites.


The overall realization rate was 98 percent.

Realization rate: the ratio of evaluation savings to reported savings

Realization Rates by Project

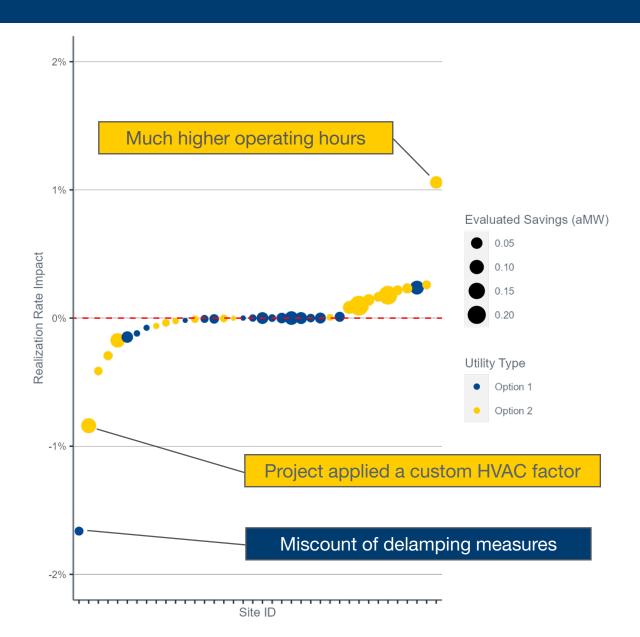
Project measurelevel realization rates

Results at the project measure level varied, with realization rates ranging from 0.4 to 1.4.

Key Drivers of Savings Differences

Negative Impact on Realization Rate

- Miscount of delamping measures
- Use of a customized HVAC interactive measure that was too high



 Higher operating hours than reported at a large site

Project Measure Impact on Realization Rates

Project measure impact map

There is some variation in realization rates, with little correlation by size of project

Cost Effectiveness Results

- Nonresidential lighting projects are cost effective
- Ratio of Benefits to Costs is 1.99 (\$1.99 in benefits for every \$1 spent)

Key Findings and Recommendations

Overall realization rate was 98 percent.

Key Finding

Option 2 utilities systematically report savings 1.5% higher than Option 1 utilities as a result of using a higher busbar factor.

Indoor agriculture lighting does not fit with typical lighting use cases and requires different treatment than other lighting measures.

Recommendation

BPA should consider updating its policy and processes regarding busbar factors to ensure consistent and fair reporting across Option 1 and 2 utilities.

BPA should consider reclassifying indoor agricultural lighting so savings are calculated correctly.

Additional Findings and Considerations

Key Finding

Gas heating penalties are not reported in Option 2 project documentation, and both Option 1 and Option 2 utilities are not publishing gas heating penalties in end use customer project proposals.

The BPA lighting calculator introduces uncertainty in wattage calculations for some lighting types.

Considerations

BPA and utilities should consider publishing their estimated gas penalties and cost impact up front along with the estimated electric savings in the project proposal to better inform the end user.

BPA should consider updating its lighting calculator to offer more flexibility in wattage reporting.

O4 Program Response

Response to Key Findings

Key Finding

Overall Realization Rate was 98%

Key drivers of variance in realization rate were operating hours, HVAC interactive effects, and lamp counts

Response

BPA is encouraged by this finding which demonstrates that the current approaches to reviewing projects for accuracy are largely effective.

BPA will continue to conduct strategic oversight to minimize the impact of these variances at the portfolio level.

Response to Key Findings

Key Finding

Nonresidential lighting projects are cost effective: Ratio of Benefits to Costs is 1.99.

Gas heating penalties are not reported consistently and are not published in end use customer project proposals.

Response

BPA is encouraged by this finding using 7th Power Plan inputs. Additional attention is being paid to ensure costs and maintenance savings are appropriately accounted for since the avoided cost from the 2021 Power Plan is significantly lower.

While relatively small in impact, a true accounting of project economics will include the heating penalty. BPA will investigate opportunity to update tools and processes accordingly.

Response to Key Findings

Key Finding

Option 2 utilities systematically report savings 1.5% higher than Option 1 utilities as a result of using a higher busbar factor.

Indoor agriculture lighting does not fit with typical lighting use cases and requires different treatment than other lighting measures.

Response

This discrepancy is the result of different methodologies prescribed for custom projects vs. those using the BPA Non-residential Lighting Calculator. BPA will investigate the opportunity to align these processes.

BPA will shift indoor agricultural lighting to the custom projects process to better account for the unique variables compared to lighting for human visibility.

Q&A

Thank You!

Program Participants

Program Team